43 research outputs found

    Measurement of loss in superconducting microstrip at millimeter-wave frequencies

    Get PDF
    We have developed a new technique for accurate measurement of the loss of superconducting microstrips at mm-wave frequencies. In this technique, we optically couple power to slot antenna, which is connected to one port of a hybrid coupler. One of the output ports of the hybrid delivers power to a series of mm-wave microstrip resonators which are capacitively coupled to a feedline followed by an MKID (microwave kinetic inductance detector) that measures the transmitted power. Two other MKIDs are connected to the remaining ports of the hybrid to measure the total incident optical power and the power reflected from the mm-wave resonators, allowing |S_(21)|^2 and |S_(11)|^2 to be accurately determined and resonance frequency fr and quality factor Q to be retrieved. We have fabricated such a Nb/SiO_2/Nb microstrip loss test device which contains several mm- wave resonators with f_r~100 GHz and measured it at 30 mK. All the resonators have shown internal quality factor Qi~500–2000, suggesting a loss tangent of ~5×10^(−4)−2×10^(−3) for the SiO_2 in use. For comparison, we have also fabricated a 5 GHz microstrip resonator on the same chip and measured it with a network analyzer. The loss tangent at 5 GHz derived from fitting the f_0 and Q data to the two-level system (TLS) model is 6×10^(−4), about the same as from the mm-wave measurement. This suggests that the loss at both microwave and mm-wave frequencies is probably dominated by the TLS in SiO_2. Our results are of direct interest to mm/submm direct detection applications which use microstrip transmission lines (such as antenna-coupled MKIDs and transition-edge sensors), and other applications (such as on-chip filters). Our measurement technique is applicable up to approximately 1 THz and can be used to investigate a range of dielectrics

    Microwave Crosstalk in Lumped Element Far-IR MKIDs

    Get PDF
    We have made close-packed far-infrared MKID arrays with ~ 250 pixels using TiN on silicon. Measurements show a large scatter in quality factor arising from crosstalk. This is confirmed by pump-probe experiments and EM simulations. Our new shielded resonator designs show very low crosstalk levels

    Two-level system noise reduction for Microwave Kinetic Inductance Detectors

    Get PDF
    Noise performance is one of the most crucial aspects of any detector. Superconducting Microwave Kinetic Inductance Detectors (MKIDs) have an "excess" frequency noise that shows up as a small time dependent jitter of the resonance frequency characterized by the frequency noise power spectrum measured in units of Hz^2/Hz. Recent studies have shown that this noise almost certainly originates from a surface layer of two-level system (TLS) defects on the metallization or substrate. Fluctuation of these TLSs introduces noise in the resonator due to coupling of the TLS electric dipole moments to the resonator's electric field. Motivated by a semi-empirical quantitative theory of this noise mechanism, we have designed and tested new resonator geometries in which the high-field "capacitive" portion of the CPW resonator is replaced by an interdigitated capacitor (IDC) structure with 10 - 20 micron electrode spacing, as compared to the 2 micron spacing used for our more conventional CPW resonators. Measurements show that this new IDC design has dramatically lower TLS noise, currently by about a factor of ~29 in terms of the frequency noise power spectrum, corresponding to an improvement of about a factor of 29^(1/2) in NEP. These new devices are replacing the CPW resonators in our next design iteration in progress for MKIDCam. Opportunities and prospects for future reduction of the TLS noise will be discussed.Comment: 4 pages, 5 figures, Proceedings of the 13th International Workshop on Low Temperature Detectors, Stanford July 20-24, 200

    Titanium Nitride Films for Ultrasensitive Microresonator Detectors

    Full text link
    Titanium nitride (TiNx) films are ideal for use in superconducting microresonator detectors because: a) the critical temperature varies with composition (0 < Tc < 5 K); b) the normal-state resistivity is large, \rho_n ~ 100 μ\muOhm cm, facilitating efficient photon absorption and providing a large kinetic inductance and detector responsivity; and c) TiN films are very hard and mechanically robust. Resonators using reactively sputtered TiN films show remarkably low loss (Q_i > 10^7) and have noise properties similar to resonators made using other materials, while the quasiparticle lifetimes are reasonably long, 10-200 μ\mus. TiN microresonators should therefore reach sensitivities well below 10^-19 WHz^(-1/2).Comment: to be published in AP

    Optimization of MKID Noise Performance Via Readout Technique for Astronomical Applications

    Get PDF
    Detectors employing superconducting microwave kinetic inductance detectors (MKIDs) can be read out by measuring changes in either the resonator frequency or dissipation. We will discuss the pros and cons of both methods, in particular, the readout method strategies being explored for the Multiwavelength Sub/millimeter Inductance Camera (MUSIC) to be commissioned at the CSO in 2010. As predicted theoretically and observed experimentally, the frequency responsivity is larger than the dissipation responsivity, by a factor of 2-4 under typical conditions. In the absence of any other noise contributions, it should be easier to overcome amplifier noise by simply using frequency readout. The resonators, however, exhibit excess frequency noise which has been ascribed to a surface distribution of two-level fluctuators sensitive to specific device geometries and fabrication techniques. Impressive dark noise performance has been achieved using modified resonator geometries employing interdigitated capacitors (IDCs). To date, our noise measurement and modeling efforts have assumed an onresonance readout, with the carrier power set well below the nonlinear regime. Several experimental indicators suggested to us that the optimal readout technique may in fact require a higher readout power, with the carrier tuned somewhat off resonance, and that a careful systematic study of the optimal readout conditions was needed. We will present the results of such a study, and discuss the optimum readout conditions as well as the performance that can be achieved relative to BLIP

    Design and Performance of A High Resolution Micro-Spec: An Integrated Sub-Millimeter Spectrometer

    Get PDF
    Micro-Spec is a compact sub-millimeter (approximately 100 GHz--1:1 THz) spectrometer which uses low loss superconducting microstrip transmission lines and a single-crystal silicon dielectric to integrate all of the components of a diffraction grating spectrometer onto a single chip. We have already successfully evaluated the performance of a prototype Micro-Spec, with spectral resolving power, R=64. Here we present our progress towards developing a higher resolution Micro-Spec, which would enable the first science returns in a balloon flight version of this instrument. We describe modifications to the design in scaling from a R=64 to a R=256 instrument, as well as the ultimate performance limits and design concerns when scaling this instrument to higher resolutions

    Overview of the Design, Fabrication and Performance Requirements of Micro-Spec, an Integrated Submillimeter Spectrometer

    Get PDF
    Micro-Spec is a compact submillimeter (350-700 GHz) spectrometer which uses low loss superconducting niobium microstrip transmission lines and a single-crystal silicon dielectric to integrate all of the components of a grating-analog spectrometer onto a single chip. Here we present details of the fabrication and design of a prototype Micro-Spec spectrometer with resolution, R64, where we use a high-yield single-flip wafer bonding process to realize instrument components on a 0.45 m single-crystal silicon dielectric. We discuss some of the electromagnetic design concerns (such as loss, stray-light, cross-talk, and fabrication tolerances) for each of the spectrometer components and their integration into the instrument as a whole. These components include a slot antenna with a silicon lens for optical coupling, a phase delay transmission line network, parallel plate waveguide interference region, and aluminum microstrip transmission line kinetic inductance detectors with extremely low cross-talk and immunity to stray light. We have demonstrated this prototype spectrometer with design resolution of R64. Given the optical performance of this prototype, we will also discuss the extension of this design to higher resolutions suitable for balloon-flight

    The cryomechanical design of MUSIC: a novel imaging instrument for millimeter-wave astrophysics at the Caltech Submillimeter Observatory

    Get PDF
    MUSIC (Multicolor Submillimeter kinetic Inductance Camera) is a new facility instrument for the Caltech Submillimeter Observatory (Mauna Kea, Hawaii) developed as a collaborative effect of Caltech, JPL, the University of Colorado at Boulder and UC Santa Barbara, and is due for initial commissioning in early 2011. MUSIC utilizes a new class of superconducting photon detectors known as microwave kinetic inductance detectors (MKIDs), an emergent technology that offers considerable advantages over current types of detectors for submillimeter and millimeter direct detection. MUSIC will operate a focal plane of 576 spatial pixels, where each pixel is a slot line antenna coupled to multiple detectors through on-chip, lumped-element filters, allowing simultaneously imaging in four bands at 0.86, 1.02, 1.33 and 2.00 mm. The MUSIC instrument is designed for closed-cycle operation, combining a pulse tube cooler with a two-stage Helium-3 adsorption refrigerator, providing a focal plane temperature of 0.25 K with intermediate temperature stages at approximately 50, 4 and 0.4 K for buffering heat loads and heat sinking of optical filters. Detector readout is achieved using semi-rigid coaxial cables from room temperature to the focal plane, with cryogenic HEMT amplifiers operating at 4 K. Several hundred detectors may be multiplexed in frequency space through one signal line and amplifier. This paper discusses the design of the instrument cryogenic hardware, including a number of features unique to the implementation of superconducting detectors. Predicted performance data for the instrument system will also be presented and discussed

    A microwave kinetic inductance camera for sub/millimeter astrophysics

    Get PDF
    The MKID Camera is a millimeter/submillimeter instrument being built for astronomical observations from the Caltech Submillimeter Observatory. It utilizes microwave kinetic inductance detectors, which are rapidly achieving near-BLIP sensitivity for ground-based observations, and a software-defined radio readout technique for elegant multiplexing of a large number of detectors. The Camera will have 592 pixels distributed over 16 tiles in the focal plane, with four colors per pixel matched to the 750 μm, 850 μm, and 1.0 - 1.5 mm (split in two) atmospheric transmission windows. As a precursor to building the full-up camera and to enable ongoing detector testing, we have built a DemoCam comprised of a 16-pixel MKID array with which we have made preliminary astronomical observations. These observations demonstrate the viability of MKIDs for submillimeter astronomy, provide insight into systematic design issues that must be considered for MKID-based instruments, and they are the first astronomical observations with antenna-coupled superconducting detectors. In this paper, we describe the basic systems and specifications of the MKID Camera, we describe our DemoCam observations, and we comment on the status of submillimeter MKID sensitivities
    corecore